.. _single_point : Single Point Energy =================== Overview -------- Single Point Energy (SPE) calculations compute the electronic energy of a molecule at a fixed geometry without optimizing the atomic positions. This is fundamental for understanding molecular stability, comparing conformers, and serving as a starting point for other calculations. Check the :ref:`visualiser-input` section for the allowed input types and how to upload the files. Modules Available ----------------- Three modules are currently available for SPE calculations: 1. **DFT** - Density Functional Theory (highest accuracy) 2. **GFN2-XTB** - Tight-binding semi-empirical method (fast and reasonably accurate) 3. **Hybrid ML model** - Fastest and DFT-accurate using machine learning Hybrid ML Module Input Fields ----------------------------- Upon selecting the **Hybrid ML** module, following inputs have to be provided: .. grid:: 1 2 2 2 :gutter: 2 .. grid-item-card:: **Charge** :text-align: left Total charge of the molecule (e.g., 0) .. grid-item-card:: **Multiplicity** :text-align: left Spin mulitplicity = 2S+1 (e.g., 1 for singlet) GFN2-XTB Module Input Fields ---------------------------- If the **GFN2-XTB** module is selected, the following inputs must be provided: .. grid:: 1 2 2 2 :gutter: 2 .. grid-item-card:: **Charge** :text-align: left Total charge of the molecule (e.g., 0) .. grid-item-card:: **Multiplicity** :text-align: left Spin multiplicity = 2S+1 (e.g., 1 for singlet) .. grid-item-card:: **Include Solvent** :text-align: left Toggle to include solvent effects .. grid-item-card:: **Solvent** :text-align: left Select a solvent (e.g., water, ethanol) DFT Module Input Fields ----------------------- Upon selecting the **DFT** module, the following inputs must be provided: .. grid:: 1 2 2 2 :gutter: 2 .. grid-item-card:: **Charge** :text-align: left Total charge of the molecule (e.g., 0) .. grid-item-card:: **Multiplicity** :text-align: left Spin multiplicity = 2S+1 (e.g., 1 for singlet) .. grid-item-card:: **Basis Set Category** :text-align: left Select the basis set family (e.g., Pople, Dunning) .. grid-item-card:: **Basis Set** :text-align: left Select the basis set (e.g., 6-31G, 6-31+Gss) .. grid-item-card:: **Exchange Functional** :text-align: left Choose an exchange-correlation functional (e.g., B3LYP) .. grid-item-card:: **Add Dispersion Correction** :text-align: left Toggle to enable dispersion correction (e.g., D3BJ) .. grid-item-card:: **Add Solvent** :text-align: left Toggle to include solvent effects .. grid-item-card:: **Solvent** :text-align: left Select a solvent (e.g., water, ethanol) .. grid-item-card:: **Solvent Model** :text-align: left Choose the solvation model (e.g., PCM, SMD) .. grid-item-card:: **Dispersion Correction** :text-align: left Choose a dispersion correction model .. grid-item-card:: **Number of Orbitals** :text-align: left Specify the number of orbitals (e.g., 5) [This is under development] .. note:: We have LDA, PBE, PBE0, M06, B3LYP, CAM-B3LYP and WB97X functionals available right now for the GPU calculations. Finally, click the **Run Calculation** button to start the simulation. Output Details -------------- The following options are available to explore and save the results of your geometry optimization: .. grid:: 1 1 1 1 :gutter: 2 .. grid-item-card:: **Metadata** :text-align: left In the metadata section, you can view all the task details including the total energy.